# DISTRICT PUBLIC SCHOOL & COLLEGE, KASUR



Established Since 1988

Class 8<sup>th</sup>

**Subject** Mathematics

Term 1<sup>st</sup>

Prepared by Ali Raza

# Chapter: 01 Operations on Sets

| 1  | if U = {1,2,3,4,5,1                        | 0), which is the s     | ubset of U?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |  |  |  |
|----|--------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
|    | (a) {2,11}                                 | (b) {11,13,15}         | (c) {2,7}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (d) {10,20}                |  |  |  |
| 2  | which is the improp                        | er subset of A = {     | 20,40,60}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |  |  |  |
|    | (a) {20}                                   | (b) {20,40}            | (c) {20,40,60}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) {20,60}                |  |  |  |
| 3  | which is correct for                       | associative law.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |
|    |                                            |                        | (b) $A \cap (BUC) = (A \cap B)U(A \cap$ | C)                         |  |  |  |
|    |                                            |                        | (d) $AU(B \cap C) = (AUB) \cap C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |  |  |  |
| 4  | how many subsets                           | does the set $A = {a}$ | a,b,c,d,e } have?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |  |  |  |
|    | (a) 25                                     | (b) 16                 | (c) 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (d) 18                     |  |  |  |
| 5  | фИАф                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |
|    | (a) =                                      | (b) ⊂                  | (c) ≠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) N                      |  |  |  |
| 6  | if AUB = B and A∩B = B then AB             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |
|    | (a) =                                      | ` '                    | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) ⊃                      |  |  |  |
| 7  | every set is a subse                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |
|    |                                            |                        | (c) unit set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) singleton set          |  |  |  |
| 8  | power set of null se                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |
|    |                                            |                        | (c) three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (d) four                   |  |  |  |
| 9  | An improper subset is to the original set. |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |
|    |                                            |                        | (c) greater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) not equal              |  |  |  |
| 10 | AU(B∩C) =                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |
|    |                                            | (b) (AUB)UC            | (c) (A∩B)∩C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) (AUB)∩(BUC             |  |  |  |
| 11 | (A∩B) <sup>c</sup> =                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |
|    |                                            |                        | (c) A∩B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |  |  |  |
| 12 |                                            |                        | and $A \cap B = \phi$ , then $B = \underline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |
|    |                                            |                        | (c) { a, b, c, g }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |  |  |  |
| 13 | If U = {1, 2, 3, 10                        | }, A = {1, 3, 5, 7, 9  | $\}$ and B = { 2, 4, 6, 8, 10 $\}$ th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nen (A – B) <sup>c</sup> = |  |  |  |
|    | <br>(a) U                                  | (b) A                  | (c) B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) ф                      |  |  |  |
| 14 | is the s                                   | subset of every se     | t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |  |  |  |
|    | · · ·                                      | (b) power set          | (c) unit set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) empty set              |  |  |  |
| 15 | If AUB = A then                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |
|    | (a) A⊆B                                    | (b) B ⊇ A              | (c) $A = B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) A ⊇ B                  |  |  |  |
|    |                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |

| Define the followings                                   |
|---------------------------------------------------------|
| Set:                                                    |
| Subset:                                                 |
| Proper Subset:                                          |
| Improper Subset:                                        |
| Power Set:                                              |
| Commutative property of union and intersection of sets: |
| Associative property of union and intersection of sets: |
| Distributive property of union over intersection:       |
| Distributive property of intersection over union:       |
|                                                         |
|                                                         |
|                                                         |
|                                                         |
|                                                         |
|                                                         |
|                                                         |
|                                                         |
|                                                         |
|                                                         |
|                                                         |
|                                                         |
|                                                         |
|                                                         |

#### Solve the following questions

Q#1: List the member of the power set of the following (a) {a,b,c,d} (b) {1,2,3} Q#2: List the member of the intersection of each pair of sets (a) {c,a,t}, {d,o,g} (b) {3,6,9,12},{2,3,4,5,6} Q#3: List the member of the union of each pair of sets (a) {a,c,d},{a,b,c,d} (b) {3,6,9,12},{2,4,6,8}

| Q#4: If U={1,2,3,4,5,6,7},A={1,2,5,7},B={1,3,6,7}, find: |                        |                             |  |  |
|----------------------------------------------------------|------------------------|-----------------------------|--|--|
| (a) A <sup>'</sup>                                       | (b) (AUB) <sup>′</sup> | (c) (A∩B) <sup>′</sup>      |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
| Q#5: If U={1,2,                                          | .3,4,5}, A={1,3} , B=  | -{2,4} , C={5}, find:       |  |  |
| (a) (AUB)UC                                              | (b) (A∩B)∩C            | (c) A∩(BUC)                 |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
| Q#6: If U={1,2,                                          | ,3,4,5}, A={1,3} , B=  | ={2,4} , C={5}, Prove that: |  |  |
| $\mathbf{A'} \cap \mathbf{B'} = (\mathbf{AUB})'$         |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |
|                                                          |                        |                             |  |  |

| O#0. If A=[1 2 2 | 4) P=(2 4 E 6) and U=(1 2 2 4 E 6) prove the De   |
|------------------|---------------------------------------------------|
| Morgan's laws    | 4},B={3,4,5,6}, and U={1,2,3,4,5,6}, prove the De |
|                  |                                                   |
|                  |                                                   |
|                  |                                                   |
|                  |                                                   |
|                  |                                                   |
|                  |                                                   |
|                  |                                                   |
|                  |                                                   |
|                  |                                                   |
|                  |                                                   |
|                  |                                                   |
|                  |                                                   |
|                  |                                                   |
|                  |                                                   |

#### **Exponents and Radicals**

| 1 | $a^m$ | Х | a <sup>n</sup> | : | = |  |
|---|-------|---|----------------|---|---|--|
|   |       |   |                |   |   |  |

(b) 
$$a^{m-n}$$

$$a^{m-n} =$$

(a) 
$$a^{m+n}$$
 (b)  $a^{m-n}$  (c)  $a^{mn}$    
 $a^{m-n} =$  (b)  $a^m \div a^n$  (c)  $a^{m+n}$ 

(b) 
$$a^m \div a^n$$

(d) 
$$a^m \div n$$

$$(a)a^m \div a^n$$

(c) 
$$(a - b)^{m}$$

(d) 
$$2^0$$

(b) 
$$\sqrt[3]{2}$$

(d) 
$$8^3$$

(a) 2 
$$a^{\frac{1}{n}} = \dots$$

(b) 
$$\sqrt[n]{a}$$

(d) 
$$a^{n x \frac{1}{n}}$$

7 
$$3\sqrt{2}$$
 and  $5\sqrt[3]{2}$  are called ------
(a) simple (b) similar

8 
$$5\sqrt[3]{2}$$
 is ----- surd. (a) simple

10 
$$(\sqrt{2})^6 = ----$$

(a) 16  
11 
$$4(a^3)^0 = ----$$

13 what is the simplest form of 
$$\frac{4}{\sqrt{3}}$$

(a) 
$$\frac{4\sqrt{3}}{3}$$

(b) 
$$\frac{4}{9}$$

(c) 
$$\frac{2}{3}$$

(d) 
$$\frac{2}{\sqrt{3}}$$

14 
$$(2^{\frac{1}{2}})^8 = -----$$

| Define the followings                                                                  |
|----------------------------------------------------------------------------------------|
| Exponent:                                                                              |
| Surd:                                                                                  |
|                                                                                        |
|                                                                                        |
|                                                                                        |
|                                                                                        |
|                                                                                        |
| Solve the following questions                                                          |
| Q#1: Express the following as exponents                                                |
| (a) $\sqrt{3} \times \sqrt{3} \times \sqrt{3} \times \sqrt{3}$ (b) $2^{-3} \times 2^3$ |
|                                                                                        |
|                                                                                        |
|                                                                                        |
|                                                                                        |
|                                                                                        |
| O#2. State the base and expense in each of the following:                              |
| Q#2: State the base and exponent in each of the following:                             |
| (a) $x^{-4}$ (b) $(\sqrt{3})^{\frac{1}{2}}$ (c) $(2^{-3})^5$ (d) $(3a^2)^0$            |
|                                                                                        |
|                                                                                        |
|                                                                                        |
|                                                                                        |

| 5<br>042. Frankrika (250)              |  |
|----------------------------------------|--|
| Q#3: Evaluate: $(256)^{\frac{5}{8}}$   |  |
|                                        |  |
|                                        |  |
|                                        |  |
|                                        |  |
| Q#4: Evaluate: $\frac{\sqrt{4}}{2^0}$  |  |
|                                        |  |
|                                        |  |
|                                        |  |
|                                        |  |
|                                        |  |
| #5: Evaluate: $\left(2^{1/2}\right)^8$ |  |
|                                        |  |
|                                        |  |
|                                        |  |
|                                        |  |
| Q#6: Evaluate: ${f (243)}^{-1/5}$      |  |

|                   |                                                                   |                | <br>             |
|-------------------|-------------------------------------------------------------------|----------------|------------------|
|                   |                                                                   |                | <br>             |
|                   |                                                                   |                | <br>-            |
|                   |                                                                   |                | <br>             |
|                   |                                                                   |                | <br>             |
|                   |                                                                   |                |                  |
|                   |                                                                   |                | <br>-            |
|                   |                                                                   |                | <br>-            |
|                   | /42E   /E                                                         |                |                  |
| Q#7:Simplify:     | $\frac{\sqrt{125+\sqrt{5}}}{6}$                                   |                |                  |
|                   | -                                                                 |                |                  |
|                   |                                                                   |                | <br>             |
|                   |                                                                   |                | <br>-            |
|                   |                                                                   |                | <br>             |
|                   |                                                                   |                |                  |
|                   |                                                                   |                | <br>-            |
|                   |                                                                   |                | <br>-            |
|                   |                                                                   |                | <br>-            |
|                   |                                                                   |                | <br>             |
|                   | $\sqrt{27} \times \sqrt{243} \times \sqrt{12}$                    |                |                  |
| Q#8:Simplify:     | $\sqrt{125} \times \sqrt{18}$                                     |                |                  |
| Q#8:Simplify:<br> | $\sqrt{125} \times \sqrt{18}$                                     |                | <br><b>.</b> _   |
| Q#8:Simplify:<br> | √125×√18                                                          |                | <br>. <u>-</u>   |
| Q#8:Simplify:     | √125×√18                                                          |                | <br><br>         |
| Q#8:Simplify:<br> | √125×√18                                                          |                | <br><br>         |
| Q#8:Simplify:     | √125×√18                                                          |                | <br><br><br>     |
|                   | $\sqrt{125} 	imes \sqrt{18}$ $\sqrt{5a}(\sqrt{5a} + \sqrt{125a})$ | 3)             | <br><br><br>     |
|                   |                                                                   | <u>3</u> )     | <br><br><br>     |
| Q#8:Simplify:     |                                                                   | <del>3</del> ) |                  |
|                   |                                                                   | 3)             | <br><br><br><br> |
|                   |                                                                   | <del>3</del> ) |                  |
|                   |                                                                   | 3)             | <br><br><br><br> |

| $\frac{1}{10 + 0^{\frac{1}{2}}}$                                                            |                        |      |
|---------------------------------------------------------------------------------------------|------------------------|------|
| Q#10:Simplify: $\frac{10+8^{\frac{1}{3}}}{\sqrt{12}\times 3^{\frac{-1}{2}}}$                |                        |      |
|                                                                                             |                        | <br> |
| <b>Q#11:Simplify:</b> $\left\{ \frac{(\sqrt{3})^6 \times 3^{-2}}{(\sqrt{5})^{-2}} \right\}$ | $\left. ight\}^{-1/2}$ |      |
|                                                                                             |                        | <br> |
|                                                                                             |                        |      |
|                                                                                             |                        |      |
|                                                                                             |                        |      |
|                                                                                             |                        |      |
|                                                                                             |                        |      |

#### **Operations on Polynomials**

| 1  | multiplication                                                                 | of polynomial is based            | d in law.                    |                          |  |  |  |
|----|--------------------------------------------------------------------------------|-----------------------------------|------------------------------|--------------------------|--|--|--|
|    | (a) distributive                                                               | e (b) associative                 | (c) symmetrical(d) m         | nultiplication           |  |  |  |
| 2  | when $(a + 12)$ and $(b - 12)$ are multiplied using the foil methods, the term |                                   |                              |                          |  |  |  |
|    | and                                                                            | - are multiplied first            |                              |                          |  |  |  |
|    | (a) b & 12                                                                     | (b) a & b                         | (c) b & -12                  | (d) a, 12                |  |  |  |
| 3  | the foil method is used to multiply                                            |                                   |                              |                          |  |  |  |
|    | (a) monomials                                                                  | s(b) binomials                    | (c) trinomials               | (d) all                  |  |  |  |
| 4  | when $48x^4 - 18x$ is divided by 6, the answer is                              |                                   |                              |                          |  |  |  |
|    | (a) $48x^4 - 3x$                                                               | (b) $8x^4 - 3x$                   | (c) $x^4 - 3x$               | (d) $x^4 - x$            |  |  |  |
| 5  | (2a + b) is a                                                                  | expression                        | on.                          |                          |  |  |  |
|    | (a) monomial                                                                   | (b) binomial                      | (c) trinomial                | (d) all                  |  |  |  |
| 6  | when $5x4 - 5x3 + 3x2$ is divided by x2, there is remainder.                   |                                   |                              |                          |  |  |  |
|    | (a) x                                                                          | (b) $x^2$                         | (c) no                       | (d) 3                    |  |  |  |
| 7  | •                                                                              | oduct of (a+1)(a+2)               |                              |                          |  |  |  |
|    | (a) $a^2 + 3a + 3$                                                             | (b) $a^2 + 2a + 2$                | (c) $a^2 + 3a + 2$           | (d) $a^2 + 5a$           |  |  |  |
| 8  | -                                                                              | oduct of $(x + 5)(x - 3)$         |                              |                          |  |  |  |
|    |                                                                                |                                   | (c) $x^2 + 2x - 20$          | (d) $x^2 + 3x - 15$      |  |  |  |
| 9  | what is the first term of quotient in $2x^2 + 7x + 7 \div x + 2$               |                                   |                              |                          |  |  |  |
|    | (a) 3x                                                                         | (b) 2x                            | (c) x                        | (d) 4x                   |  |  |  |
| 10 |                                                                                |                                   | nultiplied by $(x^2 + 2x)$ ? |                          |  |  |  |
|    |                                                                                |                                   | (c) $x^2 + 2x + 2$           |                          |  |  |  |
| 11 | method is the best suited for multiply binomials                               |                                   |                              |                          |  |  |  |
|    | (a) grid                                                                       | (b) long division                 | (c) long multiplicatio       | n(d) foil                |  |  |  |
| 12 |                                                                                | g other than binomials            |                              |                          |  |  |  |
| 10 |                                                                                | ` '                               | • •                          | (d) long division method |  |  |  |
| 13 | (a)Remainder                                                                   | otient × Divisor +<br>(b) Product | (c)divisor                   | (d) none                 |  |  |  |
| 14 | • •                                                                            |                                   | heir coefficients shoul      | • •                      |  |  |  |
|    | (a) Subtracted                                                                 |                                   |                              | (d) added                |  |  |  |
| 15 | • •                                                                            | • •                               | inder is known as            | · ·                      |  |  |  |
|    | (a)proper                                                                      | (b) improper                      | (c)exact                     | (d)inexact               |  |  |  |
|    |                                                                                |                                   |                              |                          |  |  |  |

| Solve the following questions:                                                  |
|---------------------------------------------------------------------------------|
| Q#1: Multiply the first expression by second: $m^2+mn+n^2$ , $m^2+n$            |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
| Q#2: Multiply the first expression by second: $ax^2 + bx + c$ , $px^2 + qx + r$ |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
| Q#3: Multiply the first expression by second:                                   |
| $1 + x + x^2 + x^3$ , $x^3 - x^2 + x - 1$                                       |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
| Q#4:Find the continued products of : $m + I$ , $m - 2$ , $m + 3$                |

| #5: Find the continued product of: $x + y$ , $x^2 - xy + y^2$ , $x^3 - y^3$                         |
|-----------------------------------------------------------------------------------------------------|
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
| #6: Find the continued product of:                                                                  |
| $m^2 + mn + n^2$ , $m^2 - mn + n^2$ , $m^4 - m^2n^2 + n^4$                                          |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
| Q#7: A rectangular block measures (x)m by (x+1)m by (x+2)m. What is the olume of the block if x=20? |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |

|               | s $25x^2 + 5x + 5$ fers each day for Rse days? |             | - |             |
|---------------|------------------------------------------------|-------------|---|-------------|
|               |                                                |             |   |             |
| 9: The parkii | g space outside sk<br>the cost of cleaning     | y towers me |   | ters by x+2 |
| d Rs 50 per i | n²?                                            |             |   |             |
|               | n <sup>4</sup> ?<br>                           |             |   |             |
|               |                                                |             |   |             |

| Q#11: Divide the first expression by second: $a^3 + b^3 \div a + b$   |
|-----------------------------------------------------------------------|
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
| Q#12: Divide the first expression by second: $a^4-6a-4 \div a-2$      |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
| Q#13: Divide the first expression by second: $m^3-m^2-16\div\ m^2-16$ |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |
|                                                                       |

| Q#14: Divide $x^3 - 27$ by $x^2 + 3x + 9$                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
| Q#15: If Rs ( $a^3+b^3+3a^2b+3ab^2$ ) are to be distributed equally among a+b persons, how much will each person receive? |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
| Q#15: The price of a doll is Rs(a+5). If Saana has Rs $a^2+11a+30$ , how                                                  |
| many dolls can she buy for her friend?                                                                                    |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |

## Algebraic Identities

| Multi | pie Choice Questio                                     | ns                                                                            |                                  |                                 |
|-------|--------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| 1     | $a^3 - b^3 - 3ab(a - b) = ?$                           |                                                                               |                                  |                                 |
|       | (a)( $a + b$ ) <sup>3</sup>                            | (b) $a^3 + b^3$                                                               | (c) $a^3 - b^3$                  | (d) $(a - b)^3$                 |
| 2     | $a^3 - 3a^2b + 3ab^2 - b^3 = 1$                        | ?                                                                             |                                  |                                 |
|       | (a)( $a + b$ ) <sup>3</sup> If $a + b = 1 + ab$ then a | (b) $a^3 + b^3$                                                               | (c) $(a - b)^3$                  | (d) $a^3 - b^3$                 |
| 3     | If $a + b = 1 + ab$ then a                             | $^{3} + b^{3} = ?$                                                            |                                  |                                 |
|       | (a)1 + $a^3b^3$                                        | (b) $1 - 3ab(a + b)$                                                          | (c) $1 - a^3b^3$                 | (d) 1 + 3ab                     |
| 4     | If $x + \frac{1}{x} = 5$ then $x^3 + \frac{1}{x^3}$    | <del>3</del> = ?                                                              |                                  |                                 |
|       | (a) 10                                                 | (b) 140                                                                       | (c) 110                          | (d) 40                          |
| 5     | (a) 10<br>If $x + y = 4$ then $x^3 + y^3$              | + 12xy = ?                                                                    |                                  |                                 |
|       | (a) 64                                                 | (b) 76                                                                        | (c) 52                           | (d) no one                      |
| 6     | simplify $(2x + 3y)^2 + (2x + 3y)^2$                   | $(2x - 3y)^2 = ?$                                                             |                                  |                                 |
|       | $(a)x^2 + y^2$                                         |                                                                               | (c) $8x^2 + 18y^2$               | (d) $36x^2y^2$                  |
| 7     | If $x + y = 1$ and $x^2 + y^2 =$                       | 13, then what will be the                                                     | e value of XY?                   |                                 |
|       | (a) 12                                                 | (b) $-6$                                                                      | (c) 6                            | (d) $-12$                       |
| 8     | If $x + y = 3$ , $xy = 4$ , then                       | what will be the value of                                                     |                                  |                                 |
|       | (a) −7                                                 | (b) 7                                                                         | (c) 25                           | (d) 1                           |
| 9     | Expand by using identit                                | $xy ( +2x)^2$                                                                 |                                  |                                 |
|       | (a) $4x^2 + \frac{1}{4x^2}$                            | (b) $4x^2 + 1$                                                                | (c) $4x^2 + \frac{1}{4x^2} + 2x$ | (d) $4x^2 + \frac{1}{4x^2} + 2$ |
| 10 f  | find the value of $x^3 + y^3$ ,                        | if $x + y = 3$ and $xy = \frac{5}{3}$                                         |                                  |                                 |
|       | (a) 12                                                 | (b) 15                                                                        | (c) 3                            | (d) $\frac{9}{15}$              |
| 11    |                                                        | vith each side (3x + 5)cm<br>(b) 27x <sup>3</sup> + 45x <sup>2</sup> + 75x+ 1 |                                  | (d) $27x^3 + 125$               |
| 12    | Expand by using identit                                | $xy \left(\frac{1}{x} + x\right)^2$                                           |                                  |                                 |
|       | (a) $x^2 - \frac{1}{x^2}$                              | ^                                                                             | (c) $2x^2 - 1$                   | (d) $x^2 + \frac{1}{x^2} + 2x$  |
| 13    | simplify $(4x + 5y)^2 + (4$                            | $(x - 5y)^2 = ?$                                                              |                                  |                                 |
|       | (a) 20xy                                               | (b) 40xy                                                                      | (c) $x^2 + y^2$                  | (d) $32x^2 + 50y^2$             |
| 14    | find the value of ( $x + y$                            | ) if $x^2 + y^2 = 19$ and $xy =$                                              | 3                                |                                 |
|       | (a) 5                                                  | (b) 6                                                                         | (c) 3.5                          | (d) 0                           |
| 15    | find the value of xy if                                | $x^3 + y^3 = 12$ and $x + y = 3$                                              | }                                |                                 |
|       | (a) 15 (                                               | b) 12                                                                         | (c) $\frac{5}{3}$                | (d) 3                           |
|       |                                                        |                                                                               |                                  |                                 |

| Solve the following questions:                                  |  |  |  |  |
|-----------------------------------------------------------------|--|--|--|--|
| Q#1: Find the product of (x + 3) ( $x^2 - 3x + 9$ )             |  |  |  |  |
|                                                                 |  |  |  |  |
|                                                                 |  |  |  |  |
|                                                                 |  |  |  |  |
|                                                                 |  |  |  |  |
|                                                                 |  |  |  |  |
| Q#2: Find the product of (6 $a^3+b^3$ ) (36 $a^6-6a^3b^3+b^6$ ) |  |  |  |  |
|                                                                 |  |  |  |  |
|                                                                 |  |  |  |  |
|                                                                 |  |  |  |  |
|                                                                 |  |  |  |  |
| Q#3: Find the product of $(x^p+y^q)$ ( $x^{2p}-x^py^q+y^{2q}$ ) |  |  |  |  |
|                                                                 |  |  |  |  |
|                                                                 |  |  |  |  |
|                                                                 |  |  |  |  |
|                                                                 |  |  |  |  |
| Q#4: Find product $3a\{(2a-1)^2-(2a-1)(a+1)+(a+1)^2\}$          |  |  |  |  |
|                                                                 |  |  |  |  |

| Official the continued product of                              |
|----------------------------------------------------------------|
| Q#5:Find the continued product of                              |
| $(2x+3y), (4x^2-6xy+9y^2)$ and $(8x^3-27y^3)$                  |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
| Q#6: Simplify $(2x+3)(4x^2-6x+9y^2)+(2x+1)(4x^2-2x+1)$         |
| Q#6. Simplify $(2x + 3)(4x - 6x + 9y) + (2x + 1)(4x - 2x + 1)$ |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
| Q#7: Find the continued product of                             |
| Z                                                              |
| $(x+y)(x-y)(x^2+y^2)(x^8+x^4y^4+y^8)$                          |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |
|                                                                |

| Q#8: Simplify : $(a+b)(a-b)(a^2-ab+b^2)(a^2+ab+b^2)$                        |
|-----------------------------------------------------------------------------|
|                                                                             |
|                                                                             |
| Q#9: Simplify : $(3a+2)(9a^2-6a+4)-(3a-2)(9a^2+6a+4)$                       |
|                                                                             |
|                                                                             |
| Q#10: Multiply : $(x + a)^2 - (x - b)^2 + x^2 + (a - b)x - ab$ by $(a + b)$ |
|                                                                             |
|                                                                             |
|                                                                             |

#### **Information Handling**

| 1  | statistic is a branch of mathematics that involves drawing, conclusion from colle data |                              |                                 |                                  |
|----|----------------------------------------------------------------------------------------|------------------------------|---------------------------------|----------------------------------|
|    | (a) raw                                                                                | (b) primary                  | (c) numerical                   | (d) secondary                    |
| 2  | which is the example                                                                   |                              | . ,                             | ,                                |
|    |                                                                                        | (b) book                     | (c) government report           | (d) article on                   |
| 3  |                                                                                        | number of classes each o     | of which is called              |                                  |
|    |                                                                                        |                              | (c) frequency                   |                                  |
| 4  |                                                                                        | hich a class interval lies a |                                 |                                  |
|    |                                                                                        |                              | (c) range                       |                                  |
| 5  |                                                                                        |                              | ass interval is called          |                                  |
|    | (a) class size                                                                         | (b) class mark               |                                 | (d) a & b                        |
| 6  | the difference betwee                                                                  |                              | um scores is known as           |                                  |
|    | (a) class mark                                                                         | (b) frequency                | (c) class limits                | (d) range                        |
| 7  | the range of the data                                                                  | 19, 30, 21, 24, 67, 50 is    |                                 |                                  |
|    | (a) 31                                                                                 | (b) 48                       | (c) 43                          | (d) 21                           |
| 8  | the mean value of a d                                                                  | (b) 48<br>ata set is va      | lue of the given data.          |                                  |
|    | (a) data                                                                               | (b) certain                  |                                 | (d) average                      |
| 9  | what is the mean of the                                                                | ne data set; 4, 8, 12, 16,   | , 20                            |                                  |
|    | (a) 12                                                                                 | (b) 16                       | (c) 14                          | (d) 10                           |
| 10 | the most frequent val                                                                  | ue in the data set is calle  | ed                              |                                  |
|    | (a) mean                                                                               | (b) median                   | (c) mode                        | (d) range                        |
| 11 | what is the median va                                                                  | lue in the given data set    | ; 2, 55, 12, 8, 19, 4, 7        |                                  |
|    | (a) 8                                                                                  | (b) 12                       | (c) 4                           | (d) 7                            |
| 12 | what is the mean of the                                                                | ne data; 7, 2, 34, 90, 8, 4  | 3, 11                           |                                  |
|    | (a) 26.8                                                                               | (b) 27.8                     | (c) 27.5                        | (d) 30                           |
| 13 | what is the mode of the                                                                | ne data; 5, 10, 15, 20, 10   | ), 30, 40                       |                                  |
|    | (a) 20                                                                                 | (b) 10                       | (c) 15                          | (d) 40                           |
| 14 | what is the formula fo                                                                 | r weighted mean?             |                                 |                                  |
|    | (a) $\frac{\Sigma Fx}{\Sigma F}$                                                       | $\frac{\Sigma Fx}{}$         | (c) $\frac{\Sigma F}{\Sigma X}$ | (d) $\frac{\Sigma XW}{\Sigma W}$ |
|    | <sup>(a)</sup> ΣF                                                                      | (b) n                        | $(c)$ $\Sigma X$                | <sup>(α)</sup> ΣW                |
| 15 | which of these is not a                                                                | an example of secondary      | data?                           |                                  |
|    | (a) a government rep                                                                   | ort                          | (b) personal interview          |                                  |
|    | (c) a newspaper repo                                                                   | rt                           | (d) a journal article           |                                  |

| Define the followings                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mean:                                                                                                                                                                                          |
| Median:                                                                                                                                                                                        |
| Mode:                                                                                                                                                                                          |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
| Solve the following questions                                                                                                                                                                  |
| Q#1: The class-marks of a distribution are 36, 42, 48, 54 and 60. Find the                                                                                                                     |
| class size of the distribution.                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
| Q#2: 30 apples picked at random from a consignment weigh:                                                                                                                                      |
| Q#2: 30 apples picked at random from a consignment weigh: 93, 111, 92, 86, 68, 84, 99, 82, 74, 140, 104, 110,118, 81, 84, 104, 75, 78, 98,                                                     |
| Q#2: 30 apples picked at random from a consignment weigh: 93, 111, 92, 86, 68, 84, 99, 82, 74, 140, 104, 110,118, 81, 84, 104, 75, 78, 98, 112, 125, 130, 142, 85, 78, 102, 108, 124, 130, 115 |
| Q#2: 30 apples picked at random from a consignment weigh: 93, 111, 92, 86, 68, 84, 99, 82, 74, 140, 104, 110,118, 81, 84, 104, 75, 78, 98,                                                     |
| Q#2: 30 apples picked at random from a consignment weigh: 93, 111, 92, 86, 68, 84, 99, 82, 74, 140, 104, 110,118, 81, 84, 104, 75, 78, 98, 112, 125, 130, 142, 85, 78, 102, 108, 124, 130, 115 |

| Q#3: The following shows the marks obtained by 10 students of a class in a |
|----------------------------------------------------------------------------|
|                                                                            |
| mathematics test out of 50. Find the range and mean.                       |
| 40, 35, 24, 18, 32, 22, 45, 38, 30, 20                                     |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
| Q#4: Find the mean of the first ten natural numbers.                       |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
| Q#5: Determine the mean of first eight odd natural numbers.                |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |

Q#6: The following table shows the marks obtained out of 25 by the students of class 8 in English. Determine the average marks obtained by the students.

Marks

| IVIGIRS        |            |           |           |            |                  | 20         |          |           |
|----------------|------------|-----------|-----------|------------|------------------|------------|----------|-----------|
| No of students | 4          | 3         | 7         | 16         | 4                | 3          | 2        | 1         |
|                |            |           | ·         | <b>I</b>   | <b>'</b>         | <b>-</b>   |          |           |
|                |            |           |           |            |                  |            |          |           |
|                |            |           |           |            |                  |            |          |           |
|                |            |           |           |            |                  |            |          |           |
|                |            |           |           |            |                  |            |          |           |
|                |            |           |           |            |                  |            |          |           |
|                |            |           |           |            |                  |            |          |           |
| Q#7: Find      | the me     | an, med   | dian, and | l mode fo  | or the given     | ven data:  |          |           |
| 22, 54, 10     | 0, 4, 5, 2 | 29, 51, 3 | 33, 8, 5, | 13, 85, 40 | ), 65, 5,        | 73, 84     |          |           |
|                |            |           |           |            |                  |            |          |           |
|                |            |           |           |            |                  |            |          |           |
|                |            |           |           |            |                  |            |          |           |
|                |            |           |           |            |                  |            |          |           |
|                |            |           |           |            |                  |            |          |           |
|                |            |           |           |            |                  |            |          |           |
| Q#8:Duriı      | ng the m   | nonsoor   | n season  | , the rain | levels i         | n the city | were red | corded as |
| follows :1     | .6 mm, 1   | l6 mm,    | 12 mm,    | 14 mm, 1   | l <b>3 mm,</b> 1 | L5 mm, 13  | 3 mm, 13 | mm, 16    |
| mm,12 m        | m, 15 m    | m, 10m    | ım. Find  | the mea    | n, media         | an and mo  | ode.     |           |
|                |            |           |           |            |                  |            |          |           |
|                |            |           |           |            |                  |            |          |           |
|                |            |           |           |            |                  |            |          |           |

| Q#9: The following table shows how r | nuch students of a class weigh (in kg). |  |  |  |
|--------------------------------------|-----------------------------------------|--|--|--|
| Determine the mean.                  |                                         |  |  |  |
| kg                                   | No. of students                         |  |  |  |
| 28 - 30                              | 4                                       |  |  |  |
| 30 – 32                              | 8                                       |  |  |  |
| 32 – 34                              | 10                                      |  |  |  |
| 34 – 36                              | 5                                       |  |  |  |
| 26 – 38                              | 4                                       |  |  |  |
| 38 – 40                              | 1                                       |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |
|                                      |                                         |  |  |  |